Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lars Kr. Hansen, ${ }^{\text {a }}$ German L. Perlovich ${ }^{\text {b,c }}$ and Annette BauerBrandl ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Tromsø, 9037 Tromsø, Norway, ${ }^{\text {b }}$ Department of Pharmaceutics and Biopharmaceutics, University of Tromsø, 9037 Tromsø, Norway, and ${ }^{\mathrm{c}}$ Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russian Federation

Correspondence e-mail: larsk@chem.uit.no

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.038$
$w R$ factor $=0.104$
Data-to-parameter ratio $=7.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the paper by Hansen, Perlovich \& Bauer-Brandl [Acta Cryst. (2003), E59, o1357-o1358], the coordinates of the R enantiomer of the title compound, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$, were incorrectly given instead of those of the S enantiomer. The correct coordinates of the S enantiomer are given here.

Comment

In the paper by Hansen et al. (2003), the coordinates of the R enantiomer were incorrectly given instead of those of the S enantiomer, (I). The correct coordinates of the S enantiomer are given in the deposited replacement CIF. Molecular geometry parameters are not affected, except for the signs of torsion angles; the correct values are given in Table 1 below for the torsion angles in Table 2 of the previous report (where there was also an error in the atom numbering). Fig. 1 shows the correct structure of the two independent molecules, which form a hydrogen-bonded dimer without crystallographic symmetry.

(I)

Experimental

Table 1
Selected torsion angles (${ }^{\circ}$).

$\mathrm{C} 5 B-\mathrm{C} 4 B-\mathrm{C} 2 B-\mathrm{C} 3 B$	$29.1(4)$	$\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 4 A$	-81.7 (4)
$\mathrm{C} 7 B-\mathrm{C} 10 B-\mathrm{C} 11 B-\mathrm{C} 12 B$	$-68.0(5)$	$\mathrm{C} 3 A-\mathrm{C} 2 A-\mathrm{C} 4 A-\mathrm{C} 5 A$	-144.4 (4)
$\mathrm{C} 4 B-\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{O} 1 B$	$83.5(3)$	$\mathrm{C} 7 A-\mathrm{C} 10 A-\mathrm{C} 11 A-\mathrm{C} 13 A$	67.9 (5)

All H atoms were refined freely $[\mathrm{C}-\mathrm{H}=0.85$ (3)-114 (5) \AA].
Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CELDIM in CAD-4-PC Software; data reduction: $X C A D$ (McArdle \& Higgins, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: OSCAIL (McArdle, 1993).

References

[^0]Received 8 May 2006
Accepted 31 May 2006

addenda and errata

Figure 1
The structure of the two independent molecules of (I). Displacement ellipsoids are shown at the 30% probability level. Hydrogen bonds are shown as dashed lines.

Hansen, L. K., Perlovich, G. L. \& Bauer-Brandl, A. (2003). Acta Cryst. E59, o1357-o1358.
McArdle, P. (1993). J. Appl. Cryst. 26, 752.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.

McArdle, P. \& Higgins, T. (1995). XCAD. NUI Galway, Ireland. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Lars Kr. Hansen, ${ }^{\text {a* }}$

German L. Perlovich ${ }^{\text {b }}$ and Annette Bauer-Brandl ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, University of Tromsø, 9037 Troms \varnothing, Norway, ${ }^{\text {b }}$ Department of Pharmaceutics and Biopharmaceutics, University of Tromsø, 9037 Tromsø, Norway, and Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia, and ${ }^{\text {c }}$ Department of Pharmaceutics and Biopharmaceutics, University of Tromsø, 9037 Tromsø, Norway

Correspondence e-mail: larsk@chem.uit.no

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.038$
$w R$ factor $=0.105$
Data-to-parameter ratio $=7.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Redetermination and \mathbf{H}-atom refinement of (S)-(+)-ibuprofen

The crystal structure of $(S)-(+)$-ibuprofen, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$, has been redetermined. It crystallizes in the monoclinic space group $P 2_{1}$ with two molecules in the asymmetric unit, giving a cyclic hydrogen-bonded dimer. All the H atoms were located from difference maps and refined isotropically.

Comment

The structure of racemic ibuprofen (IBP), (I), has been well described both by X-ray diffraction at 298 K (McConnell, 1974) and single-crystal pulsed neutron diffraction at 100 K (Shankland et al., 1997). The structure of (S)-ibuprofen has also been solved by X-ray diffraction (Freer et al., 1993). However, in contrast to the racemate, the quality and paucity of data did not allow the determination of the positions of the H atoms. It should be noted that the lack of this information is a serious obstacle for a logical classification of the hydrogenbond topology of the compound, and for the calculation of crystal-lattice energy by methods which are sensitive to the geometry of hydrogen bonding (e.g. Gavezzotti \& Filippini, 1997). With this background, the main aim of this work has been to find and refine the positions of the H atoms.

(I)

A view of the two crystallographically independent (S)-IBP molecules, with the atomic numbering, is presented in Fig. 1. The parameters of the hydrogen-bond geometry for both the racemic and S-enantiomer IBP are shown in Table 1 (Taylor \& Kennard, 1982). As there are two independent molecules in the asymmetric unit, the two hydrogen bonds are not geometrically equivalent; one of them is shorter than the other. Comparison of these data gives the following conclusions: (a) the hydrogen bond in the racemate is more linear than in the S-enantiomer; (b) one of the $\mathrm{O} \cdots \mathrm{O}$ distances in (S)-IBP is essentially the same as that in the racemate, but the other is longer; (c) the $\mathrm{H} \cdots \mathrm{O}$ distance in the racemate is an average of the analogous parameters of the S-enantiomer. The conformations of the S-enantiomer molecules are different; the main parameters characterizing these differences are presented in Table 2, together with corresponding ones for the racemate. As can be seen, molecule A in the S-enantiomer structure has approximately the same conformation as the IBP molecule in the racemate.

Received 20 June 2003
Accepted 30 June 2003
Online 23 August 2003

Figure 1
A view of the $(S)-(+)$-ibuprofen dimer, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.

Experimental

(S)-IBP single crystals were grown by slow evaporation from an n-heptanol solution.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$
$M_{r}=206.27$
Monoclinic, $P 2_{d}$
$a=12.456$ (4) A
$b=8.0362$ (11) \AA
$c=13.533$ (3) \AA
$\beta=112.86(2)^{\circ}$
$V=1248.2(5) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\omega-2 \theta$ scans
3086 measured reflections
2910 independent reflections
1683 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.105$
$S=0.98$
2910 reflections
416 parameters
All H -atom parameters refined

$$
D_{x}=1.098 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=14-20^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.40 \times 0.40 \times 0.30 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=27.0^{\circ} \\
& h=0 \rightarrow 15 \\
& k=-1 \rightarrow 10 \\
& l=-17 \rightarrow 15 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \text { intensity decay: } 2 \%
\end{aligned}
$$

Table 1

Hydrogen-bond geometry ($\AA \AA^{\circ}$) in the crystal structures of the title compound and of its racemate.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 A-\mathrm{H} 1 A O \cdots \mathrm{O} 2 B$	0.94 (5)	1.73 (6)	2.651 (4)	169 (5)
$\mathrm{O} 1 B-\mathrm{H} 1 B O \cdots \mathrm{O} 2 A$	1.07 (5)	1.58 (5)	2.634 (4)	168 (4)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O} 1^{\mathrm{i}, a}$	0.963 (13)	1.664 (10)	2.627 (7)	179.5 (7)

Table 2
Geometrical and conformational parameters $\left(\AA,^{\circ}\right)$ of (S) - and racemic IBP.

	(S)-IBP A	(S)-IBP B	racemic IBP
C5-C4-C2-C3	$144.4(4)$	$-29.1(4)$	$140.9(4)$
C7-C10-C11-C12	$-67.9(5)$	$68.0(5)$	$-67.3(4)$
C4-C2-C1-O2	$81.7(4)$	$-83.5(3)$	$88.7(3)$
O1-C1	$1.219(3)$	$1.226(3)$	$1.222(3)$
O2-C1	$1.302(4)$	$1.302(4)$	$1.305(3)$
C1-C2	$1.496(5)$	$1.518(4)$	$1.509(3)$

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CELDIM in CAD-4-PC Software; data reduction: XCAD (McArdle \& Higgins, 1995); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: OSCAIL (Version 9; McArdle, 1993).

This work was generously supported by the Norwegian Research Council (project No. HS 58101).

References

Enraf-Nonius. (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Freer, A. A., Bunyan, J. M., Shankland, N. \& Sheen, D. B. (1993). Acta Cryst. C49, 1378-1380.
Gavezzotti, A. \& Filippini, G. (1997). Energetic Aspects of Crystal Packing: Experiment and Computer Simulations, ch. 3, pp. 61-97, in Theoretical Aspects and Computer Modeling of the Molecular Solid State, edited by A. Gavezzotti, p. 237. Chichester: John Wiley and Sons.
McArdle, P. (1993). J. Appl. Cryst. 26, 752.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.
McArdle, P. \& Higgins, T. (1995). XCAD. National University of Ireland, Galway, Ireland.
McConnell, J. F. (1974). Cryst. Struct. Commun. 3, 73-75.
Shankland, N., Wilson, C. C., Florence, A. J. \& Cox, P. J. (1997). Acta Cryst. C53, 951-954.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

[^0]: Enraf-Nonius (1992). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.

